
Code Generation Tools for PDEs

Matthew Knepley

PETSc Developer

Mathematics and Computer Science Division

Argonne National Laboratory



Talk Objectives

• Introduce Code Generation Tools

- Installation

- Use

- Customization

• Full Simulations

- Simple input language (embedded in Python)

- Customization

- Simple Visualization

• Future Work



Code Generation Tools



Bootstrap Install

1. Install BitKeeper from http://www.bitmover.com

2. Create a root directory, e.g. PETSc3

3. Install BuildSystem in PETSc3/sidl/BuildSystem

• cd PETSc3; mkdir sidl

• bk clone bk://sidl.bkbits.net/BuildSystem sidl/BuildSystem

4. Run the bootstrap installer

• ./sidl/BuildSystem/install/aseBootstrap.py

5. Have beer and wait

http://bitmover.com/Products.BK_Pro.Downloads.html


General Install

For a general PETSc3 package name, you need to:

1. Download the package

• cd PETSc3; mkdir type

• bk clone bk://type.bkbits.net/name type/name

2. Build the package

• cd PETSc3/type/name; ./make.py options

NOTE: Configure and build options are both given to make.py



What Can Our Tools Do?

• Parse text into an AST

We can also create and AST using the API

Ex. Parse SIDL into the ASE representation

Ex. Parse C and Python implementation code

• Transform one AST into another

Ex. Transform a SIDL AST into a C AST for wrapper methods

• Output text (source code) from an AST

Ex. Pretty print implementation code with regenerated bindings



What is an AST?

A tree structure encoding the syntatic information in an expression. We may
then associate semantic information with individual nodes or the tree itself. For
example, our Expression Trees represent arithmetic expressions, so that:

• Leaves represent variables or constants

• Internal nodes represent operations on the leaves

Here is an example tree representing 1− x− y

-
@@��

1 +
SS��

x y



More General Expressions

We allow more general expression than arithmetic in order to incorporate matrix
algebra and weak form expressions

Here is another tree representing
〈
∇t, 1

2

(
∇u +∇uT

)〉
〈 , 〉

aaaa
!!!!

∇

t

/
HHH

���
+
ZZ��

∇

u

trans

∇

u

2



What is a Visitor?

The Visitor is a common CS pattern that arises during tree traversal. We want
to separate code for managing tree nodes from code to traverse and decorate the
tree.

Each Visitor has:

• A visitFoo(Foo f) method for each node type Foo

Each Node has:

• An accept(Visitor v) method, which calls the appropriate visit method on
v, passing itself

Thus a traversal will bounce back and forth between the visitFoo methods in the
visitor, and the accept methods in the nodes. Since these are generic, the nodes
need never be recompiled or relinked when a new visitor is added. This is ideal
for a slowly changing set of node types, and rapidly changing set of visitors.



Using the Parser

In the ASE Compiler package, we have a sample parser. This may be
used to verify that files can be parsed and the SIDL references can be
resolved.

testerParser.py --resolve=0 --language=SIDL sidl/sidl.sidl

testerParser.py --language=Python Type impl.py



Using the Generator

The FEM package has a sample source code generator for finite element
integration routines. The user can chooose any FIAT element type and
degree, and the generator will provide C code with a Python wrapper,
both in a shared library.

sourceGenerator.py -generationDirectory=test-cxx -degree=3



AST Base Class

The base class is ASE.Compiler.Vertex which supports tree traversal, the Visi-
tor pattern, an identifier, and simple attributes.

• clone(), copy()

• get/setParent(), get/setChildren()

• accept()

• get/setIdentifier()

• get/setAttribute()



Node Classes

A new language requires only a parser implementing to ASE.Compiler.Parser,
a pretty printer implementing ASE.Compiler.Output, and a set of node
classes. The node classes must override the accept() function from
ASE.Compiler.Vertex and handle nay dat specific to the node.



Full Simulation



Input Language

We have a simple text language for input, incorporating:

• Arithmetic, +, -, *, /, ,̂ () abs(x)

• Coordinate functions, cos(x) exp(x)

• Continuum fields (known and unknown)

• Dual pairing, 〈 , 〉

• Matrix operations, trans(u) det(u) vec(u)

• Differential operators, grad(u) div(u) curl(u)



Visualization

I use MayaVi for visualizing the solution fields. It is a Python wrapper
for the VTK graphics pipeline. I currently write VTK format files, but
I could use it directly from Python as a library.


